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I

The thesis I wish to defend is this: the geometry which
precisely and naturally fits the actual configurations of the visual
field is a non-Euclidean, two-dimensional, elliptical geometry.
In substance, this thesis was advanced by Thomas Reid in 1764,
although, since this preceded non-Euclidean geometries by 65
to 90 years, no mention was made of them.? The thesis conflicts
now, as in Reid’s time, with the view held by most psychologists
and philosophers that the actual two-dimensional configurations
of the visual field are Euclidean. It also appears to conflict
with the recent theory of Luneburg [8] that the geometry
of binocular space perception is, though non-Euclidean,
hyperbolic rather than elliptical; but we shall see that this latter
difference is merely apparent—Luneburg’s theory deals with
a different problem.

To grasp the import of our thesis it is important to
distinguish at the outset:

(Ap) Actual geometrical properties of and relations between
physical objects.

(Jp) Judgments or perceptions of geometrical properties of
and relations between physical objects.

(Av) Actual geometrical properties of and relations between
visual objects (visibles).

(Jv) Judgments or perceptions of geometrical properties of
and relations between visual objecis (visibles).

Common sense and natural science agree that Ap, the actual
geometrical properties and relations of physical objects, satisfy
the axioms and theorems of three-dimensional Euclidean ge-
ometry—at least in the measurable range between the astro-
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nomically large and the sub-microscopically small. With this
we have no quarrel at all. When psychologists study perceptions
or judgments of the geometrical relations and properties of
physical objects, Jp, they usually refer to and describe (among
other things) the visual cues, i.e., what they take to be actual
geometrical properties of visibles (Av), which give rise to these
perceptions or judgments. Thus, the psychologist will tell us
that the perception, Jp, of a table as having a square top—or
the judgment that there is a table before me which has a square
top—is normally based on certain Av, actual geometrical
properties of visibles, e.g., one or more configurations in my
visual field which are actually trapezoids, along with other
psychological or physiological mechanisms. Sometimes, of
course, psychologically normal perceptions or judgments about
three-dimensional physical objects are non-veridical or illusory;
this is the case if and only if the geometrical properties perceived
or ascribed in Jp do not coincide with the actual geometrical
properties of the physical objects referred to, Ap, as determined
by measuring the latter with measuring sticks, etc. In general,
psychologists are interested in the mechanisms or normal
processes by which perceptions of Euclidean three-space,
whether veridical or not, are formed. Thus, we shall see that
Luneburg’s theory of the geometry of binocular space percep-
tion is in fact a theory based on certain relations between Jp
and Ap, ie., between what men normally perceive as being
parallel or equidistant among physical objects, and the actual
geometrical relations of the physical objects involved. With these
findings, too, we have no particular quarrel; but it is important
to see that the subject matter of Luneburg’s thesis is different
from the subject matter of our thesis.

To grasp the import of our thesis, it must be recognized
that Ju, judgments or perceptions of geometrical relations and
properties of visual objects, may also be non-veridical or illusory
as well as veridical, i.e., that these judgments or perceptions
may or may not diverge from Av, the actualgeometrical relations
and properties of the visual objects involved. Thus, we do
not deny, for example, that most men, including most psycholo-
gists and philosophers, now think or judge or perceive the
trapezoidal appearance (the visual object) they experience when
looking at a square-topped table (the physical object) from
one side as being a Euclidean trapezoid, i.e., a trapezoid with
interior angles adding up to four right angles. But our thesis
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is that all such judgments or perceptions, Jv, which ascribe
Euclidean properties to visual objects are non-veridical. The
actual geometrical properties and relations of visual objects,
Awv, are not Euclidean, we claim. Despite the fact that it is
so widely thought that they are Euclidean, we propose to show
that actual geometrical relations of visibles, Av, satisfy just the
axioms and theorems of a two-dimensional, bipolar, elliptical
geometry. Thus, for example, the actual trapezoids found in
our visual field can be shown to have interior angles which
measurably and significantly add up to more than four right
angles, though never more than eight, as in elliptical geometry.

If our thesis is correct, a great many intelligent men have
been systematically mistaken for many centuries. This impels
us to try to account for the occurrence of such widespread
systematic error, in addition to giving direct arguments in favor
of our thesis. We must also give some attention to the objective
basis for distinguishing the “actual” geometrical properties of
visibles (Av) from the “judged or perceived” geometrical
properties of uisibles (Jv): some analogue, perhaps, to the
measuring methods and devices for physical distances which
render perceptions of such distances corrigible. We shall try
to meet both these requirements. In the next section, we outline
the direct evidence in favor of our thesis, with special attention
to methods and devices for objective measurement of distances
among actual visibles. In the third section, we examine the
relationship between the Luneburg theory and our own. In
the final section, we deal with questions stimulated by the radical
divergence between our thesis and the more commonly accepted
judgments of intelligent men.

11

The term ‘a visible’, used as Thomas Reid used it ([10]),
refers to a kind of object which any normal human being
can be aware of, attend to, and describe fairly accurately when
his eyes are open—or more exactly when one of his eyes is
open, for we shall begin by considering only monocular vision.
Visibles or visual objects are not the same as what would
ordinarily be denoted by ‘an object which is visible’. Thus,
I might say that a certain tree was an object which was visible
to me at a certain time; the “object which is visible” in this
case is a physical, three-dimensional object, a tree. I might
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say of that tree that I judged it to be about seventy feet tall;
this, a judgment of a geometrical ratio of two physical Euclidean
objects (a foot rule and the tree), is a Jp, in the language
of the preceding section. But I might also say that the tree
appears to be no larger than my thumb appears when held
at arm’s length. The appearances thus compared and found
equal are the visual objects, or visibles, in our present sense.
They are the sorts of entities which a landscape painter must
attend to—eliminating his perceptual presuppositions of three-
dimensional sizes and shapes—in order to dispose shapes and
colors on a flat two-dimensional canvas so that the latter will
“look just like” the real physical things “look”. Traditional laws
of perspective for draftsmen are useful to the painter or
draftsman. To insure that the visibles an observer will experience
when standing in front of a flat piece of drawing paper have
the same actual visual shapes (Av) as the visibles he would
experience when looking at the given physical landscape, the
draftsman must draw two-dimensional figures on the flat paper
whose comparative sizes, shapes, and geometrical relations are
very different from the comparative sizes, shapes, and geomet-
rical relations which obtain in the actual physical landscape
(Ap), and the former must be related to the latter by the strict
rules of perspective. We must not, however, commit the common
error of confusing perspective geometry or the two-dimensional
Euclidean geometry of the flat Euclidean plane (the paper)
in three-space, which contains the draftsman’s drawings, with
the two-dimensional geometry of the visibles which are experi-
enced by looking at the flat drawing or by looking at the real
landscape from the selected standpoints. Visibles are neither
the physical configurations on the flat paper, nor the physical
configurations of the landscape which is pictured; both of the
latter conform to Euclidean Geometry, but the configurations
of visibles do not. Were we physicalists, we might try to explain
the geometry of visibles in terms of the geometry of impressions
on the retina of the eyeball (spherical geometry). But the purely
phenomenological account of the geometry of visibles given
here in no way depends upon such an explanation: the non-
Euclidean properties of actual visibles are determined in a
natural way which is quite independent of any such physical,
or metaphysical, explanations.

The visibles found in the pure visual field will include
points, lines, and areas or regions. But what determines which
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geometry is satisfied in the actual visual field are determinations
(i) of actual visual distances between points in this field and
(i) of actual sizes of angles among points or staight lines in
this field. By “visual distance” we obviously do not mean the
psychologist’s “depth perception”; the third dimension, or depth
along the line of sight, has no place in the two-dimensional
geometry of visibles. Rather we mean the directly sensed or
seen distances within or among visual appearances. The reader
can readily determine if he holds one forefinger six inches
in front of his eye and the other forefinger at arm’s length
that the visual appearance of the former is about three times
the size, in width or length, of the visual appearance of the
latter. As visual objects, or visibles, such appearances exist side
by side in the same two-dimensional field; the third dimension,
or distance along the line of sight, is irrelevant, and not to
be found in this field. Again, the size of angles among visibles
can be apprehended and described fairly accurately by direct
inspection; though a physical table may be known to be square-
topped, we can easily determine that the appearance, or visible,
of that top contains only obtuse and acute angles.

The term ‘visual field’ refers to the two-dimensional contin-
uum which contains visibles. Intuitively, the momentary visual
field of a given observer is the two-dimensional expanse of
visual colors and shapes which the observer can be aware of
at that moment. In fact, of course, a normal person’s momentary
visual field is limited by boundaries determined by the nose,
eyebrows, etc. and never includes more than perhaps one
quarter of what it could contain if a person could see in all
directions at once. But we shall also want to speak, eventually,
of motions and changes as well as fixity among the visual objects
in the visual field. We must therefore think of the visual field
of a given person as persisting through time and containing,
or having as members, a series of the observer’s momentary
visual fields. But, also, we shall want to speak of a given person’s
visual field as more extended spatially than any momentary
visual field is in fact. In following a line with the eye (e.g.,
scanning the horizon), we take portions of the line previously
scanned but no longer in the momentary field to be continuous
with the portions later scanned. We will therefore speak of
a person'’s total visual field as that expanse which includes all
possible continuous extensions of lines or regions in his momen-
tary visual field. This may be interpreted as including all that
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such a person could be visibly aware of if he could see in
all directions at once at a given moment, as well as changes
among visibles which could be noted over a period of time.
Thus, though only one’s momentary visual field is directly and
immediately observable at a given moment, the concept of a
person’s total visual field is a construction based on relationships
found within and between momentary visual fields.

Now, the universally accepted thesis that the geometrical
contigurations of actual (macroscopic) physical objects (Ap)
satisfies the axioms and theorems of a three-dimensional Eu-
clidean geometry is given strong supplementary support by
the availability of measuring instruments like meter sticks for
physical distance and protractors for physical angles. Had we
no such instruments, the universal applicability of such Euclide-
an theorems as the Pythagorean theorem or the theorem that
the sum of the interior angles of a triangle always equals two
right angles would rest upon our judgments or perceptions
of physical configurations (Jp) (supplemented, perhaps, by such
relatively crude methods of measurement as using one’s hands
or feet as units of measurement). With more refined instru-
ments, we can make more precise measurements and prove,
to almost any desired degree of accuracy, the accuracy of the
Euclidean theorems with respect to actual physical objects.
Judgments and perceptions (Jp) thereby become corrigible by
objective measuring devices of Ap. The correctness of our claim
that the geometry of visibles is in fact a non-Euclidean, elliptical
geometry gains an analogous objective support by the availability
of instruments which, though less familiar, can measure the
actual distances and angles found in the visual field. Our case
does not rest, basically, upon the presence of such instruments;
the main evidence which we present below is evidence available
by commonplace direct experience of visibles unaided by instru-
ments. Such instruments will, however, allow us to confirm
the theorems of non-Euclidean geometry for those cases where
men think or judge or perceive the geometry of visibles (Jv)
to be otherwise. They provide for the objective corrigibility
of judgments about the geometrical relations among visibles.

The instruments available for visual geometry differ from
those for physical objects. One method of measuring visual
distance more accurately is related to methods astronomers
use to measure the “angular distance” between stars. Ordinarily,
when we think of the astronomer as measuring angular distance,
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we think of observing him from above (in three-space), and
we think of the angle between the imaginary straight lines
drawn from the two stars to the astronomer’s eye; this angle
is sometimes called the “visual angle”, and is expressed in
degrees: 3°, 90°, 153°. Essentially this same method may be
applied to the appearance (visible) of my forefinger; such an
appearance has visual length of 30° if my finger is six inches
from my eye, and the appearance (visible) when my forefinger
isatarm’s length is about 10°. However, the concept of observing
the astronomer from above as an object in three-space is
misleading. For what a man sees when he sees a visual distance
between two visibles is not an angle between two lines seen
from above; he simply sees a visual expanse in the visual field
between two visible points of visual space. One simple instrument
which will measure visual distances in this sense objectively
can be constructed as follows. Take a stick 14.35 inches long,
attach a six-inch metal strip marked off in quarter inches to
one end of it, and bend the metal strip so that each point
on it is equidistant from the free end of the stick. When the
free end is placed just below the eye, the quarter-inch marks
on the metal strip at the other end each mark off just one
degree (or 1/360th of a complete horizon) of visual distance.
A cruder instrument is one’s own fist, which when held at
arm’s length from the eye produces a visible about 8° or 10°
of visual width, with about 2° to 2.5° per finger. More precise
instruments would be variations on the surveyor’s theodolite
or the ship-captain’s sextant. We shall see later that the visual
field determines (unlike the field of physical objects) certain
absolute units of measurement for visual size.

For objective measurement of seen angles among visibles
(e.g., for measuring the actual size of visible angles in the
trapezoidal visible which is produced by the square table-top
when viewed from one side), it suffices to attach a protractor
perpendicularly to the same stick, with its center at the end
where the metal strip is attached. When this device is held
to the eye and the angles in the protractor are aligned with
the angles in the visible, an accurate, objective measure of
the angles in the visible is provided.

The fact that the instruments we have just described are
physical objects, describable in Euclidean terms, should not
mislead us into supposing that the geometry of visibles is in
any way essentially dependent upon or necessarily a derivation



94 NOUS

from Euclidean geometry. What is being measured still remains
two-dimensional visibles, not three-dimensional physical objects.
And, further, it would be possible, with a complicated analysis
not possible in this paper, to construe all three-dimensional
objects, including these instruments, as constructions derivable
from our non-Euclidean geometry of visibles taken as a funda-
mental point of departure.

Starting with these metrical concepts of visual distances
and angles associated with distinct operations and instruments,
it is possible to give practically effective and rigorous definitions
of visual circles and visual straight lines in the visual field:

A circleis a closed line such that all points on it are equidistant
from a point

A line segment AB is straight if and only if the distance
from end-point A to end-point B is equal, for each point
C on AB, to the distance from A to C plus the distance
from C to B.

From these definitions, we may proceed to define angles,
specifically, right angles; bisection of angles; then triangles,
quadrilaterals (closed figures with four straight lines as sides),
rectangles (equiangular quadrilaterals), squares (equilateral rec-
tangles); and so on. Note that the definitions given would all
be equally suitable for plane or solid Euclidean geometry, as
long as the operational metric for “distance” is left indeter-
minate.

Now the question arises whether the geometrical proposi-
tions which hold of the objects of the pure visual field belong
to Euclidean geometry or not. The answer is plainly that they
do not. Two-dimensional Euclidean geometry includes such
theorems as the following:

. A straight line cannot be a circle.

. Every straight line is infinitely extendable.

. Two straight lines intersect at most in one point.

Two straight lines, cut by a third straight line perpen-
dicular to both, never intersect.

All equilateral triangles have the same interior angles.
The sum of the interior angles of a triangle equals two
right angles.

7. The four angles of a rectangle are all right angles.

G0 N —
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By

precise measurements of visual distance, it is shown

that none of these theorems holds for the straight lines, triangles,
and rectangles of the pure visual field. On the contrary,

17

3.

6'.

7.

. A straight line can be a circle; i.e., a visual straight line
can be a closed line with all points on it equidistant
from a polar point in the visual field. Consider the
horizon, with a point directly overhead as its center.

. No straight line is infinitely extendable. If we extend any
straight line segment in the visual field, it eventually
returns on itself. It is thus finite, though unbounded.
Again, consider the horizon.
Every pair of straight lines intersects at two points. Imagine
standing in the middle of a straight railroad track on
a vast plane. The visual lines associated with the two
rails are demonstrably visually straight in every seg-
ment—they appear perfectly straight, not curved, visual-
ly. Yet these visually straight lines meet at two points
which are opposite each other on the horizon, and they
enclose a substantial region on the visual field.

. Two straight lines, cut by a third straight line perpendicular
to both, always intersect. The two rails, both appearing
visually straight, are cut by the straight edge of the
railroad tie at our feet, and this tie is perpendicular,
visually, to both of them; yet the two visual rails intersect
twice.

. All equilateral triangles do not have the same interior angles.
Consider a large visual triangle, like that between a star
due east on the horizon, a star due north on the horizon,
and a star directly overhead. In this case, equal visual
straight lines connect the three stars, so the triangle
is equilateral. Yet the angles are all right angles and
thus are larger than angles of smaller equilateral triangles
which approach 60°.

The sum of the interior angles of a triangle is always greater

than tweo right angles. This was the case in the visual

triangle described above and would be found to be the
case for all other visual triangles upon careful measure-
ment.

The four angles of a rectangle are always larger than right

angles. This is clear if we measure the visual angles—that

is, the angles appearing in the visual field—of, say, a
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picture frame if it is visually rectangular. It is not
necessary to use instruments to see this. We can approach
a picture frame so that the sides are not only all straight,
but the angles are all visually equal. Yet the equal angles
are all obtuse, visually.

Now, all of the counter-Euclidean propositions just enumerated
are theorems in the two-dimensional, non-Fuclidean, bipolar,
elliptic geometry of Riemann. In fact, all theorems of that
geometry will fit precisely (so far as precision is possible) the
configurations of the visual field. To those familiar with this
type of non-Euclidean geometry, the remarks above should
be sufficient proof that it describes rigorously the geometry
of the pure visual field in monocular vision.

Standard expositions of non-Euclidean geometry usually
suggest that these geometries are not incompatible with sense
experience by two lines of argument. It is pointed out that
we might conceivably find, as we made direct measurements
of larger and larger objects, that Euclidean laws began to fail,
that, for example, sufficiently large triangles had noticeably
more than two right angles as the sum of their interior angles.
Or, secondly, we are told of Euclidean models—hyperbolic,
saddle-shaped surfaces, or the surface of a sphere—of which,
provided we redefine our terms, the non-Euclidean geometries
would hold. The first line of argument does not suggest a
natural or common sense application of non-Euclidean geome-
try to any familiar macroscopic objects; if it holds at all, it
must hold of astronomically large portions of the universe.
Thus, it suggests a theoretically possible, but not an actual,
directly observable, set of empirical data which satisfy the
non-Euclidean postulates. The second suggestion serves well
enough as a consistency proof, but scarcely suggests a natural
or ordinary-language application of non-Euclidean geometry,
since the surfaces of spheres and saddles are recognized as
belonging to Euclidean geometry, and the model works only
by the terminological devices of calling lines which everyone
recognizes to be curved lines, “straight lines”.

In contrast to these ways of relating elliptical geometry
to sense experience, the preceding considerations specify a
domain of objects (visibles) which is constantly available to every
normal person, where the words “line”, “angle”, “straight”,
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“circle”, “rectangle”, “triangle”, etc. retain established, ordinary
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uses and where, even without instruments, we can see that
the theorems of elliptical geometry are immediately and in-
controvertibly applicable. Any normal man can distinquish very
well between visibles which are straight lines (qua visibles) and
those which are curved. He can agree that the appearances
produced by the two railroad tracks are both straight lines
and yet intersect at two points. And he can tell with fair accuracy,
without instruments, whether a visual object is a square, a
rectangle, a circle, a trapezoid, etc. Our definitions are thus
completely compatible with ordinary language as it is used with
respect to visibles, or visual appearances. Further, though men’s
judgments or perceptions of those visibles may diverge or go
astray for psychological or other reasons, we have, with the
instruments mentioned, methods for rendering such non-
veridical judgments corrigible on an objective basis.

Finally, we may point out as promised, that, in keeping
with the theorems of elliptical geometry, absolute units of visual
distance are definable either in terms of (1) the length of sides
of a triangle with three right angles (a quadrantal triangle),
which are always 90° of visual distance, or in terms of (2)
the distance between the two points of intersection of any two
straight lines, which is always 180° of visual distance. Letting
either of these units serve as distance 1, we can, by bisection,
set up a system of measurement (more convenient than 360°
measure) to any theoretically desired degree of accuracy.

1981

InR. K. Luneburg’s Mathematical Analysis of Binocular Vision
[8], it is also held, on the basis of empirical findings, that
“binocular visual space” is non-Euclidean. But, for Luneburg,
it is the hyperbolic geometry of Bolyai and Lobachevski, not
the elliptical geometry of Riemann, which characterizes binocu-
lar visual space. Thus, his conclusions may appear to be even
more at variance with the thesis of this paper than the common
view. For in hyperbolic geometry,

1. Through a given point not on a given line more than
one line can be drawn not intersecting the given line,

. The interior angles of a triangle total less than 180°.

3. The interior angles of a quadrilateral total less than 360°.

N
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4. Two non-intersecting lines continuously diverge on each
side of their common perpendicular. (Cf. [12].)

An examination of the experiments which form the basis
of Luneburg’s conclusions show, however, that there is no
conflict.

Luneburg’s theory is based upon a type of experiment
first investigated By W. Blumenfeld in 1913. (See [4].) In a
darkened room, the subject sits at a table with his head held
in position so that only his eyes can move. Two rows of tiny
starlike lights are placed on either side of the median (the
vertical plane in the center of his line of sight as he looks
straight ahead). The two farthest lights are fixed symmetrically
and equidistant from the median. The subject is asked to do
two things. First, he is asked to arrange the other lights so
they will form a “parallel alley” extending towards him from
the fixed lights. That is, he is to arrange the two lines of
lights on either side of the center so that he judges or perceives
them as being straight and parallel to each other in three-
dimensional space. The second task is to construct a “distance
alley”. For this experiment, all lights except the two fixed lights
and two others are turned off. The subject must arrange the
two lights so that they are perceived as nearer to him but
as being the same physical distance apart as the fixed lights,
and physically equidistant from the median. Then the last two
lights are turned off and the task is repeated with another
pair of lights closer to him, and so on. The actual physical
arrangements of lights after they have been arranged in each
of the two tasks are recorded, and the results, typically, are
of the form shown in Figure 1: the actual physical configuration
of lights which the subject judged to be “parallel” alleys diverge
(rather than being actually parallel) and are set nearer to the
median or center line than the actual lines of lights which
he judged to be equidistant. From the fact of the divergence
between actual physical objects aligned under these conditions,
Luneburg infers that the perceptions or judgments of parallelism
and of equidistance in binocular vision do not coincide. Now,
in Euclidean geometry, of course, two straight lines are parallel
if and only if they are also equidistant from each other at
all points. Among non-Euclidean geometries, two straight lines
equidistant from each point on a median either converge (in
elliptical geometry) or diverge (in hyperbolic geometry). Since
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the experiments show a statistically strong tendency towards
divergence, with a greater tendency to divergence in parallel
alleys than in equidistant alleys, Luneburg concluded that the
geometry of binocular perceptions of the spatial relations of
physical objects satisfies the fourth theorem above of hyperbolic
geometry. Other experiments along these lines satisfied other
theorems of hyperbolic geometry and trigonometry in the same
domain.

Neither the accuracy of these experimental results, nor
their connection with hyperbolic geometry, need be questioned
here. The first point is that they deal with a different domain
of data than that of our thesis. The domain within which these
hyperbolic properties and relations are alleged to exist is the
field of Jp, of judgments about, or perceptions of, geometrical
relations and properties among physical objects. The domain
which we assert satisfies the axioms of elliptical geometry is
the domain of Av, the actual geometrical relations and properties
which are found among visibles. The data on which Luneburg
bases his theory are Jp, reported judgments or perceptions
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about three-spatial relations from subjects, and Ap, actual
physical measurements of actual physical objects. The data we
appeal to for our thesis are Av, actual visual distances and
angles as directly observed or measured by instruments men-
tioned above. Even if we grant the correctness of Luneburg’s
conclusions, there is no conflict between the two theories.

Our second point is that it seems quite possible that
Luneburg’s results can best be explained by reference to the
actual elliptical character of the geometry of visibles (our thesis)
together with man’s general predisposition towards Euclidean
geometry. Consider first the geometry of the visibles presented
to an observer when he looks down a pair of straight railroad
tracks (which yield straight converging visual lines) with cross-
ties. According to our theory, the interior angles of the visibles
produced by intersections of cross-ties with tracks are not
actually equal, as in Euclidean geometry, but successively more
acute above and more obtuse below as the lines (from the
railroad tracks) converge to a point. The cross-ties intersecting
the tracks at the subject’s feet yield visual lines which intersect
the visual lines from the tracks at right angles, but the angles
among visibles produced by such intersections farther away
from the subject are successively more acute above and more
obtuse below. Consider next what happens if a subject is asked
to arrange a string of lights so that they appear, or so that
he judges them to be, parallel. If, starting from a fixed pair,
he proceeds on the assumption drawn from Euclidean principles
of perspective geometry that the interior angles determined
by points (visibles) at similar distances on the two lines from
the visibles from the two fixed points should all be equal, then
his method will lead him to arrange the physical objects in
ways which, though satisfying this assumption, will either not
produce physically straight, or not produce physically parallel,
lines of physical lights. It is quite possible that such efforts
would lead to, and account for, just the sorts of results which
Blumenfeld found. Now this, of course, is merely a suggestion.
The psychology of perception is an experimental science, and
no such suggestions should be accepted a priori; furthermore,
the design of experiments which would test such a conjecture
requires more investigation. Nevertheless, it appears at least
plausible that the elliptical geometry of visibles might provide
an explanation of the hyperbolic characteristics which Luneburg
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attributes to three-dimensional spatial perceptions on the basis
of such experiments.

Thirdly, I wish to remark thata certain amount of confusion
is engendered by the failure of philosophers and psychologists
alike to distinquish Jp, perceptions or judgments of geometrical
relations and properties among physical objects, from Av, actual
geometrical properties and relations of visibles. Thus, A. A.
Blank uses the terms ‘geometry of vision’, ‘theory of binocular
visual space’, and ‘binocular space perception’ apparently inter-
changeably in discussing Luneburg’s views ([3], [1], [2]).2 In
one of his articles, he writes:

The ultimate objective of a theory of three-dimensional space percep-
tion is to state in some precise way what an observer really “sees”
when he looks out at the physical world. ([1]: 717.)

Reid thought that what we “really see” are visibles (Av); Blank
obviously tends to identify our perceptions and judgments of
three-space relations (Jp) with what we “really see”. Common
usage, innocent of our distinctions, is no particular help on
this. But it seems clear that, one way or another, the distinction
is a clear and important one, and psychologists and philosophers
should see that it is not obscured.

Finally, whatever terminology may be chosen, it seems clear
to me that our theory of visibles is one which is supported
in the large both for binocular and monocular vision by an
enormous array of readily accessible data, while the findings
of Luneburg and Blank have a relatively small range of special
applications. The geometry of binocular visibles in the open
field—i.e., where the visibles are produced by looking at houses,
mountains, railroad tracks, and stars—is thoroughly elliptical.
In the binocular vision of relatively near objects, double-images
constantly appear and disappear among visibles—and on such
appearances most of our normal perceptual judgments of
physical sizes and distances depends. But all such images, taken
separately, satisfy the axioms of elliptical geometry; the oc-
curence of double imagery does not affect this. Since the
overlapping of two Euclidean plane figures would not lead
to a non-Euclidean composite, why should overlapping non-
Euclidean images be supposed to lose any of their non-Euclidean
properties?
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We thus stand committed in this paper to the view that
in some familiar and ordinary senses of ‘real’ (1) the visibles
we have been talking about are real entities, i.e., that some
real entities are visibles, and (2) the geometrical properties and
relationships among such visibles are really those of elliptical,
not Euclidean, geometry. We cannot, at this time, give statement
(1) the attention it deserves. But if we can, as claimed in (2),
assert that certain visibles really have, as shown by instruments
mentioned above, certain geometrical properties, it would seem
We must presuppose some entities, real in some sense, to which
such properties belong. Opponents of sense-data theories may
see a threat here; I am not sure there is one, but in any case
we must pass over their objections in order to get on to the
second question, which is our present concern.

Common sense presupposes, as G. E. Moore said in [9],
that there have been many, many human beings who have
lived and moved about among other physical objects on the
surface of the earth in three-dimensional (Euclidean) physical
space, and that all of these human beings, save perhaps the
blind, have had visual experiences. Given this presupposition,
and the history of science (particularly geometry and psycholo-
gy), educated common sense has a problem of credibility with
(2). If, as we said, a visible is “a kind of object which any
normal person can be aware of, attend to, and describe fairly
accurately when his eyes are open” (p. 89), and yet these objects
are such that on careful inspection we find the theorems of
elliptical geometry “immediately and incontrovertibly applica-
ble” (p. 97), why has this not been noticed before? And if
the thesis is true, how is its truth to be reconciled with the
many common sense and scientific principles which presuppose
Euclidean geometry? The contemporary unfamiliarity and the
historical novelty of our thesis, its concepts, and its operations
provide prima facie grounds for a healthy common sense
skepticism.

Adolf Griinbaum (in [6]), considering Luneburg’s non-
Euclidean theory, asked a series of questions which should
certainly now be asked as well of the present theory. Slightly
rephrased to fit our present purposes, these questions are:

(1) How do human beings manage to get about so easily
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in a Euclidean physical environment even though the
geometry of visual space is presumably elliptical or
hyperbolic?

(2) How is man able to arrive at a rather correct apprehen-
sion of the Euclidean metric relations of his environment
by the use of a physiological instrument whose deliv-
erances are claimed to be non-Euclidean?

(3) How can students be taught Euclidean geometry by visual
methods, if the geometrical relationships among visibles
do not conclude with the Euclidean relationships that
are taught by visual methods?

(4) If men have literally been seeing one of the non-
Euclidean geometries all along, why did it require two
thousand years of research in axiomatics even to conceive
these geometries, the Euclideanism of physical space
being affirmed throughout this period?

(5) Why did such thinkers as Helmholtz and Poincaré first
have to retrain their Anschauung conceptually in a coun-
terintuitive direction before achieving a ready pictori-
alization of the hyperbolic (elliptical?) geometry, a
feat which very few can duplicate even today?

(6) If we took groups of school children of equal intelligence
and without prior formal geometrical education and
taught Euclid to one group while teaching elliptical
geometry to the other, why is it that, probably, the first
group would exhibit a far better mastery of their materi-
al?

All of these questions seem to me susceptible to plausible
answers from the point of view of educated common sense.
Questions (1) and (2) are kinds of questions which psychologists
can answer as part of a theory of spatial perception which
is not radically different, except in geometry, from currently
established theories. Questions (3) and (6) have to do with
methods of teaching or learning Euclidean or elliptical geometry
and will be seen to pose no great problems when proper
distinctions are made. The fifth question can be answered by
reference to the history of science, i.e., the manner in which
non-Euclidean geometry was introduced, and the fourth ques-
tion, which I will deal with first, is related to the general question
of why many distinctions man makes and uses in the pursuit
of his ends are not explicitly conceptualized and attended to
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until man has arrived at a rather later state of science.

Let us consider, then, question (4). Our claim at issue is
that all normal men, living and dead, whenever they have had
actual visual experiences, have had present to them a field
of two-dimensional entities (visibles) and that these entities have
had the properties and relations of elliptical geometry. This
implies such entities have been there, “really present” in some
sense, whenever the eyes were open and working, even though
usually not noticed. It also implies that even when the entities
have been noticed and studied—and various philosophers,
psychologists, and painters, at least, have studied them and
have maintained that they are always capable of being noticed—
the true nature of their geometrical properties and relationships
have not been (except by Reid) correctly described. Understood
in this way, Griinbaum’s sentence “men have been literally
seeing one of the non-Euclidean geometries all along” does
not entail that men have noticed or been aware of such non-
Euclidean geometries. Rather, it means that there have in fact
been present to them, capable of being noticed had they looked
properly, certain entities in their field of vision which—had
they been carefully enough studied—would have been seen
to have the properties and relationships of elliptical geometry
and not of Euclidean geometry. Philosophical objections to these
entities being “really there but not noticed” will be ignored
for the moment; we assume that common sense could treat
the claim as meaningful and possibly true. But the fact that
no previous thinkers have mentioned these elliptical properties
and relations is a good common sense ground for being skeptical
of the thesis.

To neutralize this common sense ground of skepticism,
we point out first that there are many historical accounts,
accepted by common sense, of equally ubiquitous sensible data
available to human beings over as long or longer a period
of time before being noticed and correctly described by thinkers.
For example, the Euclidean principles that the interior angles
of a rectangle add up to two right angles and that the ratio
of the circumference of a circle to its diameter is m:1 were
not noticed and correctly described until some 2200 years ago,
although men had been in daily sensible contact with flat
rectangular and circular physical objects for tens of thousands
of years before that. Again, the distinct conception of uniform
accelerated motion, the foundation of modern physics, was
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not noticed, correctly described, and axiomatized until Galileo’s
Dialogue of Two New Sciences in 1638, although uniform acceler-
ated motion has been there to be noticed every time, in thousands
of preceding millenia, a man saw a coconut fall to the ground
or threw a stone into the air. In some sense, this concept was
instinctively grasped and used (though still unnoticed) every time
the man or animal successfully dodged or caught the coconut
or stone. In these cases, common sense does not question that
the properties and relations in question were really there,
capable of being noticed and measured, though in fact they
were not noticed. There is no reason to suppose that man
has now noticed all such things. Thus, although lack of previous
mention is good grounds to demand independent proof and
to be skeptical of our thesis until such proof is convincingly
offered, it is no ground at all for asserting our thesis to be
false.

But, second, the distinctions and principles of elliptical
geometry in the visual field have been noticed and correctly
described by some scientific thinkers. There are places in the
history of science where the concepts, operations, and principles
of elliptical geometry were explicitly used and developed with
respect to visible data, but due to prior commitments to
Euclidean geometry, the distinctness of these principles was
lost by being interpreted as belonging to a subdivision of
Euclidean geometry. Thus ancient astronomers observed the
“celestial sphere”, i.e., the fixed stars and planets, and laid
out in great detail the visible distances (visual angles) between
them. They not only predicted what disposition of visibles (from
fixed stars) would be seen at future times, but they also
established formulae for the paths of certain visibles (from
planets) among the fixed arrangements of the others. None
of their calculations required other than principles of elliptical
geometry, together with empirical data for predictions. No
scientific estimate was available, or needed, as to the distance
in the third dimension (away from the observer) of these bodies.
There was no ground, except conjecture and an impulse to
project earthbound Euclidean relations, for assuming that the
fixed stars were embedded in a spherical body or any other
three-dimensional shape. Thus, elliptical geometry of the visual
field was correctly described by early astronomers but was
dressed in Euclidean guise. The clarification of our concepts
and thesis is as much or more a matter of getting rid of
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extraneous concepts and assumptions as of becoming aware
of new things.

Still the question arises why ordinary people, if they have
constantly had present to them, and have constantly been using,
visual entities which are describable and related by principles
of elliptical geometry, rarely notice the visibles and have never
consciously recognized the principles which they have always
been using in some sense subconsciously. Assuming for the
moment that this question is intelligible to educated common
sense, there is, I think, a plausible common sense explanation.
The distinctions men notice and attend to consciously first are
the distinctions men have learned that they must attend to
consciously in order to survive or achieve their wants. Now,
to survive and satisfy the wants necessary to survival, man must
move about in physical space, travel from this place to that,
pick up this physical object and avoid that, and make judgments
on physical distances and shapes, and physical velocities. What
is important for survival is not consciously to notice and
distinguish the many different visual appearances and their
relationships, but to notice and attend to the physical relation-
ships necessary to get the apple into the mouth, or to drive
an automobile, so we can live. Visibles are important to us
in the sense that if men did not subconsciously use them properly
to get hold of or avoid physical objects, mankind would probably
have become extinct. But these visibles rarely require conscious
attention. Visibles are not things that we eat, nor are they
things which can harm us. It is not visibles as such which we
must gain or avoid to survive; it is physical objects. It may
or may not be considered regrettable that man’s intellectual
progress begins with attention to distinctions necessary for
physical survival, but I think educated common sense will not
deny that the broad history of man’s intellectual and scientific
development has indeed proceeded in this way.

Only as man’s fundamental mastery and control of his
physical necessities becomes secure has it been possible for
man to attend more and more to questions of truth or falsehood
which are not essential to his survival. There is therefore, I
think, a very plausible explanation of why the conscious and
explicit development of Euclidean geometry has preceded the
conscious and explicit attention to the purely elliptical geometry
which has been exemplified all along in the visibles present
to man. The hold of Euclidean geometry, which through its
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marriage with classical physics has enormously increased man’s
ability to control and utilize physical entities for his ends, is
plausibly explained in terms of the very fundamental pragmatic
values which man correctly associated with Euclidean concepts
and principles, What should be surprising perhaps, in the
context of these considerations, is not the late discovery of
our thesis, but rather the fact that two hundred years ago
Reid, through an interest in truth alone and in the absence
of any other end or pragmatic reason or precedent, should
have discovered these principles so early.

Let us now turn to Griitnbaum’s first and second questions:

(1) How do human beings manage to get about so easily
in a Euclidean physical environment even though the
geometry of visual space is presumably elliptical?

(2) Howis man able to arrive at a rather correct apprehen-
sion of the Euclidean metric relations of his environment
by the use of a physiological instrument whose deliv-
erances are claimed to be non-Euclidean?

In a sense, the second question should precede the first, for
the main reason normal men do get about easily in physical
space is because they can arrive through vision at rather correct
apprehensions of Euclidean metric relations. Blind men get
about in the physical world, but they clearly do not get about
as easily as men who can see, and it is rather doubtful that
mankind could survive if all men were blind. But the second
question poses no great difficulties. It is simply the problem
of visual space perception as it is dealt with by psychology.
Standard treatments of visual space perception in psychology
list the ‘visual cues’ which provide the basic elements upon
which our perceptions or judgments of a third dimension and
of the sizes of objects and of their distances from the observer
depend. The basic problem is that of correlating the entities
and relationships of entities in a two-dimensional visual field—or
in the overlappings or comparisons of two-dimensional images,
where binocular vision or parallax is concerned—with the quite
different geometrical properties and relationships of the corre-
lated three-dimensional physical objects. The only part of the
standard psychological theories of visual space perception which
is affected by our thesis is that portion which assumes that
the two-dimensional objects of the visual field which serve as
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“cues”, i.e., the visibles, have the properties and relationships
of two-dimensional Euclidean geometry. What is new is that
the transformations which relate visual cues to perceptual
judgments of physical spatial relations must now be reformulat-
ed as transformations from a two-dimensional elliptical geometry
rather than from a two dimensional Euclidean geometry. The
mathematical principles of transformation involved may or may
not turn out to be more complicated than the principles now
assumed to hold based on a projective or perspective geometry
which retains certain non-elliptical postulates originally embed-
ded in Euclidean geometry.? In any case, the second question
is a question for mathematicians and psychologists to work
out and is neither theoretically less coherent nor notably more
difficult than standard problems of this sort. Refinements and
improvements are required in the psychological theory of space
perceptions, but no radically new problems are presented.

Since we may now assume that very plausible accounts
can be given of how man uses visual cues which have properties
and relations of elliptical geometry to achieve rather accurate
visual perceptions of sizes and distances of objects in three-
dimensional Euclidean space, we may also assume that these
accounts will help to explain in large measure how normal
human beings manage to get about so easily in a Euclidean
physical environment (question (1)).

But there is another aspect to this question; an aspect
which requires that we ask how man knows the world of physical
objects at all, and in particular how he knows that it has the
properties and relationships of Euclidean, not elliptical, geome-
try. It seems probable that man would never have gotten the
idea of a world of three-dimensional physical objects by vision
alone, if our thesis is true. Not only is there the old question
of how he could, or why he should, infer a third dimension
from data which is merely two dimensional; there is also the
new question, from our thesis, of how or why he would infer
the existence of objects with Euclidean properties when the
objects presented to his vision, his eyes, have only elliptical
properties. The answer here is an old one; it is that the basic
data by which we know physical objects do not come from
vision. Berkeley and Mach long ago insisted, and many others
have since agreed, that knowledge of the third dimension and
its metric are primarily dependent upon touch: upon so-
maesthetic, tactile, and kinesthetic data. It is clear to common
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sense that knowledge of physical objects and their relationships
and properties are not dependent on vision alone; for blind
people, even people blind from birth, can arrive at correct
judgments of Euclidean and physical relationships of objects,
Further, the supposed paradigm of physical measurement—the
laying of a rigid rod in contact with the object to be measured—
involves (in its primitive formulation) elements of tactile, but
not necessarily of visual, experience. Even more convincing,
to this writer at least, is the following account of our normal
experiences. Consider the simple occasion of walking through
a doorway. Two sorts of experiences are transpiring: there
is the regular, rythmic, somaesthetic sensations and jars as the
feet take one, two, three, four, . . . steps, probably punctuated
by the sounds of the feet hitting the floor; and there is the
changing visual field, the rectangular or trapezoidal visible
associated with “the doorway” which enlarges with accelerating
speed until it suddenly disappears, as we “pass through the
doorway”. The concepts of the physical object, the doorway,
and the physical process of walking through the doorway thus
involve a correlation of non-visual, tactile sequences with the
sequence of transformations of visibles. It is not in keeping
with “common sense” to define or identify physical objects in
terms of correlations of tactile, kinesthetic, and visual sensory
data. For, in general, common sense is quickest to call those
objects “real” which it must attend to in order to survive and
achieve its ends, and since it is the hurts and pains of hitting
a wall or falling off a precipice or the successes dependent
on walking through a doorway which must be attended to
and avoided or gained to achieve our ends, common sense
assigns primary “reality” to the physical objects it must conceive
of and attend to rather than to the various collections of sensory
entities abstracted from experiences which it wuses (usually
subconsciously) as basis for its judgments and perceptions of
these objects. Nor is it mere layman’s common sense which
adopts this stance; the physicist and the psychologist alike would
reject such an identification. In a very real sense, natural and
social sciences are projections of common sense, and they retain
those sound basic categories and ontological commitments which
the normal surviving human preserves tenaciously against
philosophers. Nevertheless, it is compatible with common sense
and natural science to hold that our knowledge of, or awareness
of, physical objects and their Euclidean relationships is based
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primarily on tactile or kinesthetic sensation. Long before geome-
try or measuring sticks appeared, man found certain regularities
in the numbers of steps he had to take in moving from a
given spot to a seen object; he learned how, for example, to
proceed from the fact that a visual image had visual size x
and grew to a visual size yin taking two normal steps (kinesthetic
experience) to a rough estimate of the number of additional
similar steps necessary to reach the object (to make it visually
fill his field) and how big it would be relative to himself when
he reached it. When these subconscious rules, constantly used
from prehistoric times not only by men but presumably by
seeing animals as well, are formulated precisely and compatibly
with our common sense judgments and findings, the result
is a Euclidean theory of the geometrical properties and relations
of physical objects.

Had man been, instead of an animal dependent on locomo-
tion to survive, another kind of organism—a huge eye, unable
to move itself or feel anything kinesthetic, but nevertheless
surviving (as some vegetables survive)—it seems reasonable to
conjecture that man would not have developed any conception
of Euclidean space of physical objects and that our visibles
with their elliptical geometry would constitute the structure
of man’s world. On the other hand, were all men born blind,
and dependent on touch and feel and counting steps to get
what was needed, it seems probable that men would have had
to utilize subconsciously only Euclidean geometry—at least in
the world as we have found it.

Thus, man finds his way about in a physical environment
obeying Euclidean principles primarily because of what he learns
from his kinesthetic and tactile experiences and sequences; he
does so easily, if he has vision, by virtue of correlations (which
it is the job of the psychological theory of space perceptions
to make explicit) between the non-Euclidean properties and
relationships of existing visibles and the Euclidean properties
and relations established primarily through kinesthetic and
tactile experiences.

Griinbaum’s fifth question, why men like Poincaré and
Helmholtz had to retrain their Anshauung conceptually in a
counterintuitive direction before achieving a ready pictorializa-
tion of hyperbolic geometry, may be answered by reference
to the historical sequence by which non-Euclidean geometries
were introduced. Geometers began with the observation that
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one of Euclid’s postulates, the parallel postulate (or related
ones), was not intuitively obvious. At first the effort was to
prove this postulate from others; this failed. Then the effort
was to assume its falsehood and try to derive from this assump-
tion a contradiction. This was a strictly formal effort, not one
based on, or dependent upon, any positive intuition that
conflicted with the parallel postulate. These attempts failed.
On purely formal grounds, then—the ground that no inconsis-
tency was involved—non-Euclidean geometries were launched.
Thus, explicit non-Euclidean geometries were introduced
through the back door as it were; they began as formally possible
systems without any intuitive models which were compatible
with ordinary conceptions of straight lines and metric relation-
ships. Further, hyperbolic geometry came first (Lobachevski,
1829-30; Bolyai, 1832); elliptical geometry came some twenty-
five years later (Riemann, 1854). There were formal reasons
for this. Hyperbolic geometry involves only the alteration of
one postulate, Euclid’s fifth; elliptical geometry is more radically
different, involving both Euclid’s fifth postulate and several
other Euclidean postulates and assumptions. For various rea-
sons, mathematicians and geometers have given more attention
to hyperbolic than elliptic geometry, and the accepted plan
for reorganization and expansion of the field of geometry
(Klein’s “Erlanger program”) so as to subsume all geometries,
Euclidean and non-Euclidean, under projective geometry is
not really suitable for the inclusion of elliptical geometry, which
is therefore often subject to minor mention or neglect in
mathematical treatments.

The strain which Poincaré and Helmholtz experienced in
trying to fit their intuition to non-Euclidean geometry was in
part due to the fact that non-Euclidean geometry was introduced
first as a formal possibility; but also it was due to the fact
that hyperbolic geometry despite being formally closer to Euclid
has been, from the first, farther removed from any intuitive
model compatible with ordinary uses of geometrical terms than
elliptic geometry. It was early recognized that if we simply
identified “straight lines” with “great circles” in the Euclidean
geometry of a sphere, we had a model which in all respects
satisfied the axioms of elliptical geometry. The infinite saddle-
shaped model of hyperbolic geometry is much less intuitive.
As Reid pointed out, if the observer stood in the center of
the sphere and looked out, great circles would indeed look
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straight (although this seems not to have been widely noticed,
since most people assumed we look at the sphere from the
outside). And now, in any case, it seems clear that there is
no intuitive difficulty in, or any counter-intuitive problem with
respect to, elliptical geometry, whatever it may be with respect
to hyperbolic geometry. The difficulty is no longer with intui-
tion, but with cutting through accumulated common-sense
assumptions about the ubiquity of Euclidean geometry and
eliminating extraneous presuppositions from our perceptions
of visibles.

The final questions (3) and (6) which Griinbaum suggests,
again, seem to me to pose no difficulties. The answer to question
(3), how students can be taught Euclidean geometry by visual
methods if vision is non-Euclidean, is in part that students
are not in fact taught Euclidean geometry by purely visual
methods. A very important part of the teaching of Euclidean
geometry involves having flat blackboards, or pieces of paper
on top of flat, three-dimensional surfaces, and then using
physical rulers and compasses and pencils or chalk to make
straight lines and measurements on those surfaces. The rela-
tionships found to hold are relationships not between visibles
as such, but between physical objects in three-space; it is the
equalities and congruences of physical entities on the blackboard
or paper which seems to confirm the theorems of Euclid, not
the relations between the visibles which in fact do not confirm
Euclid. This fact was very clearly recognized by Reid, who
wrote:

When the geometrician draws a diagram with the most perfect
accuracy—when he keeps his eye fixed upon it, while he goes through
a long process of reasoning, and demonstrates the relations of the
several parts of his figure—he does not consider that the visible
figure presented to eye, is only the representative of a tangible figure,
upon which all his attention is fixed; he does not consider that these
two figures have really different properties; and that what he
demonstrates to be true of the one, is not true of the other.

What is true of methods of proof and learning in Euclidean
geometry is also true of the laws of perspective developed in
perspective geometry (which led eventually to projective geom-
etry). In perspective geometry, the images of real or three-
dimensional Euclidean objects are treated as two-dimensional
Euclidean objects. Does this imply that this branch of mathe-
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matics and its history of successful applications supports the
view that the two-dimensional objects of vision are Euclidean?
The answer is no. Among the early students of perspective
were such artists as Leonardo da Vinci and Albrecht Durer.
The result they were interested in producing directly was the
physical image on the flat surface of a three-dimensional
Euclidean object, their canvas, not the visibles produced in
the eye. It is true that they wished the visibles produced by
their canvas (when one stands directly in front of it) to coincide
with the visibles produced by the real three-dimensional objects
or landscape being pictured. But what Reid said of the plane
geometrician working over his plane triangles and figures inked
out on a flat piece of paper in three-space applies equally
to the artist trying to get a “likeness” on a canvas; both are
concerned with physical entities, not visibles.

As for Gritnbaum’s sixth question, which assumes that
school children would of course find it far easier to master
and grasp Euclidean geometry than a non-Euclidean geometry,
I believe that his assumption, with respect to elliptical geometry,
is simply wrong. Only empirical experiments in education will
establish the correct answer, but I think it highly likely that,
with the new sorts of instruments we have proposed and a
proper textbook, school children can be taught, in the same
length of time it takes to teach Euclidean plane geometry, a
system of bipolar, elliptical geometry using visual triangles,
quadrilaterals, and straight lines, etc. for illustrative purposes
and our instruments for establishing metric relationships of
equality or difference. What a child does in learning Euclidean
geometry is to look at, measure with a compass or ruler, figures
on a flat piece of paper or chalkboard. Even when he talks
about “two-dimensional” objects, or objects in plane geometry,
in such a course, he is using as examples objects in three-dimen-
sional space, for flatness is a property of objects in three-space,
not in two-space, and his figures and proofs in plane geometry
go awry if his surfaces are not flat. He does not, therefore,
measure or compare visibles. To do that, he needs other
instruments, of the sort we have mentioned. Given these
instruments, he can be brought to notice metric equalities and
differences which he systematically ignores in plane geometry.
Thus, Griinbaum’s sixth question rests on the false presupposi-
tion that two-dimensional Euclidean geometry is taught by
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strictly visual “methods”; when this is examined critically, the
difficulty is removed.

Although our answers to Griinbaum’s six questions do not
prove our thesis—its proof rests on evidence like that outlined
in our second section—they should, I believe, successfully
neutralize and remove most if not all of the reasonable hesita-
tions which educated persons might feel because of its novelty.

APPENDIX

In a recent article on visual geometry ([7]) published after
the preceding parts of this paper were accepted, James Hopkins
mentions a “paradox” and offers a solution. His “paradox”
is that (1) men can only see, picture, and imagine Euclidean
characteristics of figures, yet (2) science now holds that the
physical world is really non-Euclidean. “It seems odd,” he
remarks, that we are “constrained to picture the contradictory
of what we have scientific reason to think is true.” His solution,
briefly, is that the fact that we cannot see, picture, or imagine
non-Euclidean figures doesn’t prove that the phenomena of
vision, picturing, and imagining are necessarily Euclidean.
Rather, the visual field (hence picturing and imagining) is simply
too lacking in the finer-scale discriminations needed to distin-
guish the non-Euclidean properties which, according to scien-
tists, hold on an astronomical scale. There is a maximum ratio
of length to width which is consistent with visibility, Hopkins
points out. (If, for example, two lines were 100,000 times as
long as the gap separating them—e.g., 100 meters long with
a gap of only 1 millimeter—men could not see both the whole
line and the gap at one time; if the lines intersected at both
ends, we could not distinguish by sight whether they were
straight and non-Euclidean or slightly bent and Euclidean, since
the necessary discriminations would involve the same too-large
ratio of 100,000 to 1.) Thus, Hopkins concludes, “phenomenal
figures are no more Euclidean than non-Euclidean. So phe-
nomenal geometry is not Euclidean. Rather, it is neutral and
indeterminate” ([7]:23). And since the non-Euclidean geometry
ascribed to the physical world by physicists involves much greater
ratios than 100,000: 1, there is no conflict or paradox.

The trouble with Hopkins’ paradox is that he has it exactly
wrong. The geometry of visibles, as we have argued, is in fact
demonstrably non-Euclidean; the visibles which normal men
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actually see when their eyes are open and the lights are on
actually have, whether noticed or not, all of the properties
and relationships of an elliptic, bi-polar geometry. And the
geometry of the physical world, in contrast, is Euclidean and
demonstrably so in all the regions between the astronomically
large and the sub-microscopically small. (Whether the findings
of physicists shall be interpreted as a finding that space is
curved, deduced from an operational definition of straightness
as the path of propagation of light in empty space, or as a
finding merely that light is deflected from Euclidean straight
lines in gravitational fields is an issue we cannot pursue here;
but it seems at least dubitous that it is crucial to the issue.)
The real problem, which is not a paradox, is to show through
a psychological theory of perception how it is that man translates
non-Euclidean deliverances of vision into veridical judgments
about Euclidean relationships among physical objects.

Hopkins, like Kant, Mill, Strawson, Bennett, Griinbaum,
and others whom he quotes, is in good company among the
many intelligent men who have been mistaken on the geometry
of visibles. Though he does not take the position that visual
geometry is necessarily and only Euclidean, he maintains the
basically erroneous position that “we cannot form the non-
Euclidean pictures of our space” on the grounds that our sight
is not sufficiently perfect ([7]:27). His arguments and discus-
sions illustrate perfectly the explanations which we have given
on how intelligent men might come to make such a mistake.
First, he confuses judgments about the geometrical properties
of physical objects (Jp) with the actual geometrical properties
of visibles (Av). Thus, he says, following Strawson, “x is a
phenomenal straight line” means “x is the look a thing has
if it looks like a straight line” and “how a thing looks is connected
with how it might be judged to be” ([7]:14). That he confuses,
or ignores, the data available in the field of visibles with these
judgments about physical things is apparent from the way he
treats a passage from an article by J. R. Lucas, which asserts,
as we do, that the “geometry of our visual experience is not
Euclidean,” and supports this by an example like ours. Hopkins
quotes from Lucas:

Let the reader look up at the four corners of the ceiling of his
room, and judge what the apparent angle at each corner is; that
is, at what angle the two lines where the walls meet the ceiling appear
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to him to intersect each other. If the reader imagines sketching each
corner in turn, he will soon convince himself that all the angles
are more than right angles, some considerably so. And yet the ceiling
appears to be a quadrilateral. From which it would seem that the
geometry of appearance is non-Euclidean.

But Hopkins rejects the argument on the basis of a classic
confusion which Reid pointed out two centuries ago. Picking
up the suggestion to sketch, Hopkins says “But in no sketch
will the reader draw a quadrilateral with four visibly obtuse
angles. None can be drawn.” ([7]:13.) The impossibility he
speaks of is of course the fact; but it says nothing about an
impossibility of seeing non-Euclidean quadrilaterals. It is a
physical impossibility he points to; the impossibility of making
a quadrilateral on a flat piece of paper in Euclidean three-space,
measuring its angles by putting a protractor adjacent to its
angles, and finding the angles, as measured by the protractor,
to add up to more than 360°. If one defines “visual quadrilateral”
as “what we would judge the quadrilateral on the piece of flat
paper to be” (as he does), then no doubt most people would
judge the physical angles to be four right angles even when
they appeared as four acute or obtuse angles in a trapezoid.
But if we distinguish our judgments about physical objects
(Jp) from the actual properties of visual figures (Av)—as Lucas
was plainly doing and Hopkins was plainly refusing to do—then
it is apparent that appearances of the four angles in the ceiling
are angles with a sum of more than 360°. Hopkins was guilty,
in Reid’s words, of failing to see that the “visible figure presented
to the eye, is only the representative of the tangible figure,
upon which all of his attention is fixed . . . and that what
he demonstrates to be true of the one, is not true of the other.”
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NOTES

!This paper is a revision of a paper entitled “Geometry and the Pure Visual
Field” read at the meetings of the American Philosophical Association, Western
Division, in Columbus, Ohio, on May 3, 1963. The new title is that of Section
IX, Ch. VI, in Thomas Reid’s An Inquiry into the Human Mind on the Principles
of Common Sense [10] and is adopted in deference to Reid’s priority, of which
I was not fully aware when the first paper was written.

?Reid was the first, and 1 believe the only, philosopher of standing to hold
the thesis set forth in this paper. Only recently, as in Norman Daniels' article
[5], has Reid's position begun to attract the attention it deserves.

3Roberts and Suppes [11] also take Luneberg’s data as a good basis for
developing a “geometry of visual perception”. They are fairly explicit in viewing
these data as judgments about distances, perpendicularity, and parallelism among
physical objects (our Jp). Yet they speak of the geometry it leads to as dealing,
interchangeably, with “perceptual space”, “visual space”, “subjective visual space”,
and “primitive visual space”, thus obscuring or ignoring the distinction between
geometries based on relations and properties of judgments about physical objects
(Jp) and geometries based on relations and properties found among actual visibles
(Av) themselves.

*Projective geometry assumes for example that two points always determine
one and only one straight line; this is true in Euclidean but not in Elliptical
geometry.



